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Nitrogen Inversion Barrier and Nature of the Si-N Bond in Silylamine: an 
ab initio SCF-LCAO-MO Study 

By J. M. LEHN* and B. MUNSCH 
(Institat de Chimie, 1 m e  Blaise Pascal, 67-Strasbourg, France) 

Summary The electronic structure (nature of the N-Si 
bond, d-orbital participation) and the energy barrier to 
nitrogen inversion in silylamine have been studied using 
extended Hartree-Fock SCF-LCAO-MO calculations. 

The electronic structure and the molecular properties of 
compounds containing bonds between first- and second-row 
elements have been subject to many experimental and 
theoretical investigations, one of the main concerns being 
the effect of the d-orbitals of the second-row element.1 
Trico-ordinated nitrogen sites bearing directly linked 
silicon, t 2  p h o s p h o r u ~ , ~ ~ ~  or sulphu9T6 atoms are either 
planar or present low barriers to pyramidal inversion. 

Within the framework of our theoretical studies of struc- 
tural effects on inversion barriers"' we report here some 
results of extended Hartree-Fock calculations of silylamine, 
SiH,-NH2. Calculations have been performed with the 
general program IBMOL8 using a basis set of Gaussian 
functions: ( 1 2 .  915) for the SiH, groups and ( 1 0 .  6/5) 

for the NH, grouplo$ (Sub-case SC 1 ) ;  to these orbitals, a 
set of d-functions on N (exponent dN 1.0) and a set of p -  
functions on H of the NH, group (exponent pH 0.50) have 
been added (Sub-case SC 2)  ; further additions comprise two 
sets of d-functions on Si (exponents dl 0.75 and d, 0-15) 
(Sub-case SC 3).$ This basis set: SiH, (12 . 9 . 2 / 5 ) ,  NH, 
(10 . 6 ,  1/5. 1) has then been contracted into: SiH, 
(6 . 4 . 2 / 2 ) ,  NH2 (4  . 2 . 1 / 2  . 1).  The molecular geometry 
has been adapted from (SiH,) ,NH.2 Calculations have 
been performed for four values of the pyramidality 
angle #: 0, 15, 35, and 60" without further geometry 
optimization. The variations of total energy as a function 
of # are shown in the Figure for SC 1 ,  SC 2, and SC 3. 

We describe here the results concerning the nitrogen 
inversion barrier and the nature of the Si-N bond. 

(i) In  SC 3, silylamine is found to be non-planar with 
an energy minimum of -346.28821 a.u. at # =I 

30" 45'. The total energy for q5 = 0" amounts to 
- 346.28717, giving a barrier to nitrogen inversion 

t N-Silylaziridine derivatives display very low inversion barriers (probably below 6 kcal mole-1) (ref. 3). 
Basis set composition is given using the following convention: (number of s-functions . number of @-functions. number of 

&functions on heavy atomlnumber of s-functions . number of p-functions on hydrogen atom) : (s . p . d / s  . p ) .  
§ Because of the length of the computations and the need of computing several geometries a t  the NH, site, no p-functions have been 

added to H in the SiH, group. It should 
however leave the Si-N bond and even more so the NH, site nearly unaffected. A calculation including pa-functions for the SiH, 
group will be described in the final report. 

This unbalances the basis set and locally affects the population analysis in the SiH, group. 
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(ii) 

(iii) 

(iv> 

(v> 

of 0.65 kcal mol-1. This low barrier (the inversion 
barrier of NH, amounts to 5.8 kcal mol-l) is in 
agreement with the planar structure of (SiH,),NH 
and with the low inversion barriers (< 6 kcal mol-l) 
in N-~ilylaziridines.~ Analysis of the energy com- 
ponents shows that the barrier is of the attractive 
type.ll 

Silylamine is found to be planar when no d-functions 
on nitrogen are included in the basis set (SC 1). 
Thus the presence of d polarization functions on the 
inverting site has a marked effect on inversion 
barriers.7 In addition, it is seen (Figure) that dN 
and $,-functions on the NH, group (SC 2) flatten the 
energy curve. 

In the absence of d-functions on Si (SC 2), the energy 
minimum (-346.22776) is at # = 32" 5', and the 
inversion barrier amounts to 0.8 kcal mol-1. Thus, 
the presence or the absence of d-orbitals on Si leaves 
the inversion barrier and the geometry at the 
nitrogen site nearly unaffected. In  terms of 
empirical effects, the barrier decrease from NH, to 
SiH,-NH, may be ascribed to inductive release of 
electron density from Si to N** but not to (d+)n- 
conjugation. 

The inclusion of d-functions on Si increases the total 
Si-N overlap population from 0.6 (SC 1) to 0.85 
(SC 3) electron and leads to a 0.25 electron population 
transfer from N to Si [ca. 0.1 electron transfer from 
N($,) in the highest occupied MO (HOMO)]. ' 5 ~ -  

Type contributions to the Si-N bond arise from 
Si(d zzp)-N(pz) overlap [0-13 overlap population due 
almost entirely to the HOMO (nitrogen lone pair 
MO)] and from Si(p,)-N(p,) overlap (0.1). Because 
of negative overlap populations, the total d gross 
atomic population on Si is zero; the largest individual 
gross population is found to be Si(d,,) = 0-14 
arising almost entirely from d, in the HOMO, It 
should also be noted that the addition of d, and d, 
to SC 1 leads only to a very small decrease in total 
energy (0.015 a.u.). (These results are all for the 
form 46 = 35'). It is difficult to decide whether 
these results should be interpreted as (d+)rr-bonding 
in the usual chemical sense or as a polarization15 
effect of the d-functions on Si. These functions 
participate only weakly in molecular bonding. 
However, the HOMO is clearly a n-type MO con- 
taining mainly Si(d,,) (0.14 e) and N(p,) (1.22 e) 
and corresponds quite closely to the usual picture of 
(weak) (d-p)n-conjugation between the nitrogen 
lone pair and the silicon d-orbitals (see also semi- 
empirical calculations on trisilylaminef6). 

As inversion proceeds, electron density is trans- 
ferred into the nitrogen 2p, orbital (+ 0.1) and the 
Si-N overlap population increases very slightly 

(+0.04). The (d,.+,) Si-N rr-type overlap is the 
same in the transition state (# = 0') (only +0.02 
increase) as in the ground state (4 = 35'). In  the 
transition state the HOMO contains 70% N(2pz), 
7% Si(ds,), and 12% Hl(s). 

- 3 I 6-23 L ! 

-346.29' I 
I l l  I I 

-60 -35 -15 0 15 35 60  
+ ( O )  

FIGURE. Variation of the total energy of the SiH,-NH, molecule 
during nitrogen inversion in the three cases SC1, SC2, and SC3 
(see text). 

In  conclusion, Si-N(d-p)n-overlap contributes only weakly 
to the molecular stability in the electronic ground state of 
silylamine, but a specific participation to the HOMO is 
found. t t 

Silicon d-orbital effects are very similar in the ground and 
transition states of the nitrogen inversion process and i t  is 

7 The importance of &functions on N in the computation of nitrogen inversion barriers has also been demonstrated for ammonia 
(ref. 12), fluoramine (ref. 13), and cyanamide (ref. 13). 

** Electron-attracting substituents are known to  raise the barrier (see references in ref. 14). 
t t  To assess the importance (and the relevance) of the (d+)?t-bonding problem it would be very instructive: first, to  compare the 

Si-N bond of silylamine to the C-N bond of methylamine (with d-functions on C and N) ; second, to  compare the amount of n-type 
character in the Si-N bond of silylamine to that in the N(1)-C bond of cyanamide (ref. 13) H,N(l)-CN, where the presence of lone-pair 
conjugation [(p+)x-type] is generally accepted. These points wiI1 be discussed in the final account of this work. 
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not necessary to invoke increased (d+) =-conjugation in the 
transition state to explain the low nitrogen inversion silylamines. 

barriers and the flattened or planar nitrogen sites found in 
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